High Aluminum Wastes: Sludge Feed Preparation and Implications on Vitrification

DK Peeler Process Science and Engineering Section Environmental and Chemical Process Technology

January 24, 2007

Outline

- Al-dissolution considerations and/or impacts to:
 - Slurry Rheology
 - Material Settling and Transfer Considerations
 - Glass Formulation
 - Based on DWPF and EM-21 Studies
 - Al₂O₃ solubility
 - Nepheline formation
 - Waste loading
 - Melt rate
 - Waste throughput
 - Thoughts or considerations on implementation

Slurry Rheology Issues

- Physical limitations or criteria are defined based on yield stress
 - Tank Farm limits and targets
 - 5 Pa and 12-15 wt% insoluble solids for F to H area transfers
 - 5 Pa target for H-area transfers
 - Current DWPF design basis (operating limits):
 - 10 Pa and 19 wt% insoluble solids
- Significant differences observed in rheological behavior between Purex and HM based sludges as a function of % insoluble solids
 - HM based feeds show an exponential increase in yield stress at lower % insoluble solids as compared to Purex based feeds
 - appears to be independent of Al-dissolution

Sludge Rheology Issues

- Yield Stress (Pa)SRS Tank
 15 H HLW HM Sludge 28
 w t.% AI 5 w t.% Fe
- SRS Tank 42 H HLW HM
 Sludge (Post AI Dissolution)
 17w t.% AI 13 w t.% Fe
- SRS Tank 8F HLW Purex Sludge 8 w t.% Al 24 w t.% Fe
- + DWPF Design Basis 1980
- o GA Iron Work HM Sludge Simulant 1979 14 w t% Al 24w t.% Fe
- GA Iron Work Sludge
 Simulant 1982 Purex Sludge
 w t.% AI 23 w t.% Fe

Sludge Rheology Issues

Sludge Rheology Issues

- HM-based sludges appear to provide more physical limitations
 - Dependent on blending and washing strategy to control
- Recent rheological measurements on Sludge Batch 4 (SB4) confirmed high yield stress
 - When SB4 blended with SB3 (70/30 and 60/40), sludge characteristics were more favorable (as shown in previous slide)
 - "Over" washing sludge (removal of salts) negatively impacted rheology of feed
 - Can occur even with PUREX type feeds, SB2 example

Sludge Settling Comparison: HM vs PUREX

If settling time >> quiescent time smaller batches will be required

- Impact of slower settling times
 - Quiescent time; hydrogen retention
 - Sludge preparation time
- Slow settling has the potential to prevent wash/ concentration endpoints from being met

Glass Formulation Issues

- Current R&D for high Al₂O₃ based feeds
 - DWPF glass formulation
 - Primarily SB4
 - HM-based, no Al-dissolution
 - EM-21 International Program
 - Evaluating both DWPF and Hanford compositional regions
- Primary issues being addressed:
 - Al₂O₃ solubility
 - Nepheline formation
 - Impact of high B₂O₃ on nepheline formation
 - Waste loading (impact on projected operating windows)
 - Melt rate

Al₂O₃ Projections in Sludge

- Significant difference in projected Al₂O₃ concentrations between DWPF and Hanford sludges
 - DWPF Al₂O₃ concentrations (without Al-dissolution) are on the order of 25 – 45 wt% in sludge (current projections)
 - Projections based on current blending scenarios
 - SB4 Al₂O₃ projections are ~ 25 30 wt%
 - Hanford projections indicate Al₂O₃ concentrations up to ~80 wt% are possible
 - High Na₂O concentrations (up to ~50 wt%) also projected in Hanford waste

SB4 Compositional Projections

	Case 1 (30/70 Blend)		Case 2 (40/60 Blend)		SB4 Blend
	SB4 Batch	SB4 Blend	SB4 Batch	SB4 Blend	10-10-06 Composition
	Wt % Oxide, Calcine Basis	Wt % Oxide, Calcine Basis	Wt % Oxide, Calcine Basis	Wt % Oxide, Calcine Basis	(Served as the basis for VS w Frit 418) Wt % Oxide, Calcine Basis
Al_2O_3	42.46	26.09	42.84	28.19	25.49
CaO	1.45	2.75	1.46	2.55	2.77
Cr ₂ O ₃	0.12	0.20	0.12	0.19	0.20
Fe ₂ O ₃	15.69	28.89	15.84	26.82	28.99
MgO	0.67	2.74	0.68	2.43	2.77
MnO	3.37	5.77	3.40	5.39	5.78
Na ₂ O	29.60	18.33	28.95	20.40	18.71
NiO	1.17	1.66	1.18	1.58	1.66
SO_4	0.00	0.87	0.00	0.87	0.87
SiO ₂	1.24	2.70	1.26	2.47	2.71
U_3O_8	2.87	8.95	2.89	8.03	9.03

Al₂O₃ Projections in Sludge: Hanford

SB4 Glass Formulation Efforts

- Al₂O₃ solubility in glass
 - SB4's Al₂O₃ concentration: ~ 28%
 - At 45% waste loading, Al₂O₃ concentrations in glass projected to be ~11%
 - Al₂O₃ solubility in glass not an issue at this level
 - SB4 studies have fabricated multiple glasses ranging from 9 12 wt% Al₂O₃
 - Complete dissolution of Al₂O₃ in glass
 - Acceptable in terms of process and product performance constraints
 - EM-21 task has successfully incorporated up to 27% Al₂O₃ in glass
 - higher Al₂O₃ concentrations targeted given Hanford projections

Frit 418 – SB4 Variability Study

•	-	Sludge	Heat Treatment	Composition
•	1	ARM		refe rence
Z	2	EA		reference
•	3	SB4VS	cec	measured
•	4	SB4VS	ccc	measured bc
•	5	SB4VS	cec	targeted
•	б	SB4VS	quenched	measured
	7	SB4VS	quenched	measured bc
•	8	SB4VS	quenched	targeted

- Highest release: 0.84 g/L
 - SB4VS-43ccc
 - \sim 9.9% Al₂O₃ in glass
- EA glass: 16.695 g/L
- SB4VS-38ccc (10.5% Al₂O₃)
 - NL [B]: 0.63 g/L

SB4 Glass Formulation Efforts

Nepheline formation

- A crystalline phase that can have negative impact on the durability of the glass
- Nepheline discriminator:

$$\frac{SiO_2}{SiO_2 + Na_2O + Al_2O_3} > 0.62$$

- Glasses with values less than 0.62 prone to nepheline formation
- Known that B₂O₃ suppresses nepheline formation
 - No B₂O₃ term in the discriminator function → current R&D addressing issues (DWPF and EM-21 International programs)
 - Potential impact of nepheline discriminator artificially cut-off compositional regions of interest (higher Al₂O₃ concentrations)

Nepheline Discriminator: Adjustment?

- EM-21 task has fabricated glasses with nepheline discriminators < 0.45
 - Al₂O₃ concentrations between 18 - 27% in glass (high B₂O₃)
 - Preliminary assessments indicate acceptable glass durabilities
- DWPF and EM-21 tasks integrated to reevaluate discriminator
 - Remove conservatism

Impact on Waste Loading

For DWPF:

- Strategic frit development efforts for SB4 have mitigated the potential negative impacts of higher Al₂O₃ concentrations
 - Al₂O₃ solubility not an issue
 - Higher B₂O₃ based frits developed to suppress nepheline formation
 - SB4 glass systems or projected operating windows are limited by other process related criteria
 - Liquidus temperature
 - Low viscosity
 - » Avoid being nepheline limited → product quality constraint

SB4 Projected Operating Windows

Nepheline limited

Preferred: using assumptions of high B and Na for melt rate

500 series: higher B₂O₃ contents

Frit ID	B_2O_3	Na ₂ O	Case 1	Case 2	"Average"
	(in frit)	(in frit)	(30/70)	(40/60)	(~35/65)
418	8	8	25 - 42	25 - 43	25 - 43
			$\mathrm{T_{L}}$	Neph	$\mathrm{T_{L}}$
425	8	10	25 - 43	25 - 41	25 - 42
			Neph	Neph	Neph
503	14	4	25 - 37	25 - 40	25 - 38
			$T_{ m L}$	$T_{\rm L}$	T_{L}
503-m1	14	5	25 - 38	25 - 41	25 - 39
			$T_{ m L}$	$T_{ m L}$	T_{L}
505	14	6	25 - 39	25 - 42	25 - 41
			$T_{ m L}$	$T_{ m L}$	T_{L}
503-m2	14	7	25 - 40	25 - 42	25 - 42
			$T_{ m L}$	Neph	$T_{\rm L}$
503-m3	14	8	25 - 41	25 - 41	25 - 42
			${ m T_L}$	Neph	Neph
503-m4	14	9	25 - 42	25 - 40	25 - 41
			$T_L/Neph$	Neph	Neph
503-m5	14	10	25 - 39	25 - 38	25 - 38
			low η	low η/Neph	low η
503-m6	16	8	25 – 41	25 - 40	25 – 41
			T_{L}	Neph	low η/Neph

Melt Rate for SB4

- Preliminary assessments indicated a significant decrease in melt rate between SB3 and SB4 based systems without frit composition changes
 - Frit 418 SB3 versus Frit 418 SB4
 - ~20 30% reduction in melt rate for SB4 system
- Strategic frit development efforts have resulted in higher melt rates relative to Frit 418
 - Slurry fed melt rate tests indicated:
 - Frit 503 has the potential to provide comparable melt rates to the Frit 418 – SB3 system
 - Higher B₂O₃ based frits have:
 - Suppressed nepheline formation and led to higher melt rates

Other Issues or Thoughts

- How much Al to remove?
 - DWPF has a lower Al₂O₃ limit as a part of the SME acceptability criteria (e.g., > 4% Al₂O₃ in glass or > 3 wt% with a upper alkali constraint)
 - If pretreatment efforts remove too much Al₂O₃ from sludge, Al₂O₃ would have to be added back through the frit to meet criterion.....
 - Al₂O₃ in glass is a function of Al₂O₃ in sludge and waste loading range of interest
 - must cover a range of waste loadings
 - If lower WL needed for max throughput, need to ensure Al₂O₃ concentration in glass is met
- Melt rate differences between boehmite and gibbsite?
 - Understanding that Al-dissolution is effective in removing gibbsite.....
 - Is there a disadvantage in melt rate by removing gibbsite?
 - Does Gibbsite convert to boehmite in cold cap?

Other Issues or Thoughts

- Impact of Al-dissolution on salt stone?
 - Set or gel times?
- Impact of Al-dissolution on mass reduction?
 - Obviously there is a positive effect of Al-dissolution in terms of mass reduction
 - Is there an optimum point at which further removal does not improve the overall flowsheet and waste throughput for DWPF or the HLW system in general?
 - Cost benefit analysis?

To Implement or Not (Degree of Implementation)?

- There are a number of issues associated with the decision to perform Al-dissolution including:
 - Sludge settling issues
 - Rheological issues
 - Glass formulation issues
 - For DWPF:
 - Al₂O₃ solubility does not appear to be an issue
 - Higher B₂O₃ frits have suppressed nepheline formation and yielded higher melt rates
 - » Melt rates and waste throughputs to be monitored once SB4 is processed in DWPF to confirm laboratory results
 - Projected operating windows not dictated by Al₂O₃ based issues

To Implement or Not (Degree of Implementation)?

- An integrated assessment of the impacts of Al-dissolution should be made:
 - To meet mass reduction needs, how far should Al-dissolution be executed?
 - DWPF and Hanford answers could be different?
 - If Al-dissolution reduces mass but causes processing issues in the facility (e.g., rheology), is waste throughput maximized?
 - Al-dissolution for DWPF should not be implemented to the extent where Al₂O₃ would need to be added to the frit?
 - Is there an optimum point at which further removal does not improve the overall flowsheet and waste throughput for DWPF?
 - Cost benefit analysis for overall HLW system or flowsheet?

